Recent updates:2018/07

  • Yang Y, Mao K, Gao S, et al. O‐, N‐Atoms‐Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts[J]. Advanced Materials, 2018: 1801732.

  • Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery[J]. Chemical Society Reviews, 2018, 47(11): 4198-4232.

  • Zhang F T, Xu L, Chen J H, et al. Electroless deposition metals on poly (dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials[J]. ACS applied materials & interfaces, 2018, 10(2): 2075-2082.
  • Wang D, Wu H, Zhou J, et al. In Situ One‐Pot Synthesis of MOF–Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy[J]. Advanced Science, 2018: 1800287.

  • Wang Z, Chen Q. Metal‐Free Catalytic Reduction of 4‐Nitrophenol by MOFs‐Derived N‐Doped Carbon[J]. ChemistrySelect, 2018, 3(4): 1108-1112.
  • Zhao G, Wu H, Feng R, et al. Novel metal polyphenol framework for MR imaging-guided photothermal therapy[J]. ACS applied materials & interfaces, 2018, 10(4): 3295-3304.
  • Jiang P, Chen J, Wang C, et al. Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridium‐Cobalt Alloy Core Encapsulated in Nitrogen‐Doped Carbon Cages[J]. Advanced Materials, 2018, 30(9): 1705324.

  • Hu L, Wang Z, Wang H, et al. Tuning the structure and properties of a multiferroic metal–organic-framework via growing under high magnetic fields[J]. RSC Advances, 2018, 8(25): 13675-13678.
  • Wang Z, Chen Q. Vapochromic behavior of MOF for selective sensing of ethanol[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 194: 158-162.



  • Su J, Yang Y, Xia G, et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media[J]. Nature communications, 2017, 8: 14969. DOI: 10.1038/ncomms14969
  • Wang D, Zhou J, Chen R, et al. Core–Shell Metal-Organic Frameworks as Fe2+ Suppliers for Fe2+-Mediated Cancer Therapy under Multimodality Imaging[J]. Chemistry of Materials, 2017, 29(8): 3477-3489. DOI: 10.1021/acs.chemmater.6b05215
  • Wang D, Zhou J, Shi R, et al. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy[J]. Theranostics, 2017, 7(18): 4605.
  • Zhang R, Sun Z, Feng R, et al. Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction[J]. ACS applied materials & interfaces, 2017, 9(44): 38419-38427.
  • Yang K, Jiang P, Chen J, et al. Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal–Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts[J]. ACS applied materials & interfaces, 2017, 9(37): 32106-32113.
  • Wang H, Mukherjee S, Yi J, et al. Biocompatible Chitosan–Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal–Chemo Therapy[J]. ACS applied materials & interfaces, 2017, 9(22): 18639-18649.
  • Kong X, Zhang C, Hwang S Y, et al. Free‐Standing Holey Ni (OH) 2 Nanosheets with Enhanced Activity for Water Oxidation[J]. small, 2017, 13(26): 1700334.
  • Kong X, Zhu H, Chen C L, et al. Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts[J]. Chemical Physics Letters, 2017, 684: 148-152.
  • Xia G, Su J, Li M, et al. A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity[J]. Journal of Materials Chemistry A, 2017, 5(21): 10321-10327.
  • Zheng F, Liu D, Xia G, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 693: 1197-1204.
  • Kong X, Liu Q, Zhang C, et al. Elemental two-dimensional nanosheets beyond graphene[J]. Chemical Society Reviews, 2017, 46(8): 2127-2157.
  • Chen J, Yang Y, Su J, et al. Enhanced activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with small amount of Pt[J]. ACS applied materials & interfaces, 2017, 9(4): 3596-3601.
  • Liu H, Xia G, Zhang R, et al. MOF-derived RuO 2/Co 3 O 4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions[J]. RSC Advances, 2017, 7(7): 3686-3694.
  • Jiang P, Yang Y, Shi R, et al. Pt-like electrocatalytic behavior of Ru–MoO 2 nanocomposites for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(11): 5475-5485.


  • Yang Y, Lin Z, Gao S, et al. Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity[J]. Acs Catalysis, 2016, 7(1): 469-479. DOI: 10.1021/acscatal.6b02573
  • Zhang R, Hu L, Bao S, et al. Surface polarization enhancement: high catalytic performance of Cu/CuO x/C nanocomposites derived from Cu-BTC for CO oxidation[J]. Journal of Materials Chemistry A, 2016, 4(21): 8412-8420.DOI: 10.1039/c6ta01199c
  • Gao L, Wang C, Li R, et al. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions[J]. Nanoscale, 2016, 8(15): 8355-8362..DOI: 10.1039/c6nr00575f
  • Chen J, Xia G, Jiang P, et al. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal–Organic Frameworks[J]. ACS applied materials & interfaces, 2016, 8(21): 13378-13383..DOI:10.1021/acsami.6b01266
  • Su J, Xia G, Li R, et al. Co 3 ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(23): 9204-9212.DOI: 10.1039/c6ta00945j
  • Wang D, Zhou J, Chen R, et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy[J]. Biomaterials, 2016, 100: 27-40. DOI:10.1016/j.biomaterials.2016.05.027
  • Wang Z, Chen Q. Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials[J]. Green Chemistry, 2016, 18(21): 5884-5889. DOI: 10.1039/c6gc01206j
  • Wang C, Wang D, Yang Y, et al. Enhanced CO oxidation on CeO 2/Co 3 O 4 nanojunctions derived from annealing of metal organic frameworks[J]. Nanoscale, 2016, 8(47): 19761-19768.
  • Zheng F, Yin Z, Xu S, et al. Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation[J]. Materials Letters, 2016, 182: 214-217. DOI: 10.1016/j.matlet.2016.06.108
  • Wang D, Zhou J, Chen R, et al. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@ C@ MIL-100 (Fe) nanoparticles[J]. Biomaterials, 2016, 107: 88-101.DOI: 10.1016/j.biomaterials.2016.08.039
  • Li R, Li R, Wang C, et al. Pd–Co 3 [Co (CN) 6] 2 hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions[J]. Dalton Transactions, 2016, 45(2): 539-544.DOI: 10.1039/c5dt03631c
  • Chen J, He M, Xu P, et al. Photoluminescence distinction of lung adenocarcinoma cells A549 and squamous cells H520 using metallothionein expression in response to Cd-doped Mn 3 [Co (CN) 6] 2 nanocubes[J]. RSC Advances, 2016, 6(88): 84810-84814.DOI: 10.1039/c6ra08370f
  • Xia G, Liu D, Zheng F, et al. Preparation of porous MoO 2@ C nano-octahedrons from a polyoxometalate-based metal–organic framework for highly reversible lithium storage[J]. Journal of Materials Chemistry A, 2016, 4(32): 12434-12441.DOI: 10.1039/c6ta03491h


  •  Yang Y, Lun Z, Xia G, et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J]. Energy & Environmental Science, 2015, 8(12):3563-3571.
  • Zheng F, Xia G, Yang Y, et al. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries[J]. Nanoscale, 2015, 7(21):9637.
  • Zheng F, Zhu D, Shi X, et al. Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(6):2815-2824.
  • Zheng F, He M, Yang Y, et al. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.[J]. Nanoscale, 2015, 7(8):3410-7.
  • Hu L, Feng X, Wei L, et al. MoS2 ultrathin nanosheets obtained under a high magnetic field for lithium storage with stable and high capacity[J]. Nanoscale, 2015, 7(25):10925-10930.
  • Chen J, Zhang W, Zhang M, et al. Mn(II) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo.[J]. Nanoscale, 2015, 7(29):12542-12551.
  • Chen J, Zhang W J, Guo Z, et al. pH-Responsive Iron Manganese Silicate Nanoparticles as T 1-T 2* Dual-Modal Imaging Probes for Tumor Diagnosis[J]. ACS applied materials & interfaces, 2015, 7(9): 5373-5383.
  • Wang Y, Bao S, Li R, et al. Universal strategy for homogeneously doping noble metals into cyano-bridged coordination polymers[J]. ACS applied materials & interfaces, 2015, 7(3): 2088-2096.
  • Li R, Yang Y, Li R, et al. Experimental and Theoretical Studies on the Effects of Magnetic Fields on the Arrangement of Surface Spins and the Catalytic Activity of Pd Nanoparticles[J]. ACS applied materials & interfaces, 2015, 7(11): 6019-6024.
  • Yang Y, Zheng F, Xia G, et al. Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode[J]. Journal of Materials Chemistry A, 2015, 3(36): 18657-18666.
  • Wang D, Guo Z, Zhou J, et al. Novel Mn3 [Co (CN) 6] 2@ SiO2@ Ag Core–Shell Nanocube: Enhanced Two‐Photon Fluorescence and Magnetic Resonance Dual‐Modal Imaging‐Guided Photothermal and Chemo‐therapy[J]. Small, 2015, 11(44): 5956-5967.
  • Wang Z, Li R, Chen Q. Enhanced activity of CuCeO catalysts for CO oxidation: influence of Cu2O and the dispersion of Cu2O, CuO, and CeO2[J]. ChemPhysChem, 2015, 16(11): 2415-2423.
  • Zhu D, Zheng F, Xu S, et al. MOF-derived self-assembled ZnO/Co 3 O 4 nanocomposite clusters as high-performance anodes for lithium-ion batteries[J]. Dalton Transactions, 2015, 44(38): 16946-16952.
  • Tang Y, Chen Q, Chen R. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains[J]. Applied Surface Science, 2015, 347: 202-207.
  • He M, Zhou J, Chen J, et al. Fe 3 O 4@ carbon@ zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo[J]. Journal of Materials Chemistry B, 2015, 3(46): 9033-9042.
  • Li R, Li R, Wang C, et al. Pd–Co 3 [Co (CN) 6] 2 hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions[J]. Dalton Transactions, 2016, 45(2): 539-544.


  • Zhang P, Li R, Huang Y, et al. A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@ C core–shell nanoparticles with enhanced catalytic activity for reduction reactions[J]. ACS applied materials & interfaces, 2014, 6(4): 2671-2678.
  • Shi X, Zheng F, Yan N, et al. CoMn 2 O 4 hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction[J]. Dalton Transactions, 2014, 43(37): 13865-13873.
  • Gao L, Li R, Sui X, et al. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol[J]. Environmental science & technology, 2014, 48(17): 10191-10197.
  • Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857.
  • Wang Y, Chen Q. Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect[J]. ACS applied materials & interfaces, 2014, 6(9): 6196-6201.
  • Zheng F, Zhu D, Chen Q. Facile Fabrication of Porous Ni x Co3–x O4 Nanosheets with Enhanced Electrochemical Performance As Anode Materials for Li-Ion Batteries[J]. ACS applied materials & interfaces, 2014, 6(12): 9256-9264.
  • Bao S, Yan N, Shi X, et al. High and stable catalytic activity of porous Ag/Co3O4 nanocomposites derived from MOFs for CO oxidation[J]. Applied Catalysis A: General, 2014, 487: 189-194.
  • Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous
    carbon prepared from a metal-organic framework[J]. Nature communications, 2014, 5: 5261.

  • Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries[J]. Nanoscale, 2014, 6(3): 1236-1257.
  • Hu H, Gao L, Chen C, et al. Low-cost, acid/alkaline-resistant, and fluorine-free superhydrophobic fabric coating from onionlike carbon microspheres converted from waste polyethylene terephthalate[J]. Environmental Science & Technology, 2014, 48(5): 2928-2933.
  • Hu H, Zhong H, Chen C, et al. Magnetically responsive photonic watermarks on banknotes[J]. Journal of Materials Chemistry C, 2014, 2(19): 3695-3702.
  • Chen J, Guo Z, Wang H B, et al. Multifunctional mesoporous nanoparticles as pH-responsive Fe2+ reservoirs and artemisinin vehicles for synergistic inhibition of tumor growth[J]. Biomaterials, 2014, 35(24): 6498-6507.
  • Gao L, Hu H, Sui X, et al. One for two: Conversion of waste chicken feathers to carbon microspheres and (NH4) HCO3[J]. Environmental Science & Technology, 2014, 48(11): 6500-6507.
  • Zhang F, Hu H, Zhong H, et al. Preparation of γ-Fe 2 O 3@ C@ MoO 3 core/shell nanocomposites as magnetically recyclable catalysts for efficient and selective epoxidation of olefins[J]. Dalton Transactions, 2014, 43(16): 6041-6049.
  • Kong X, Chen Q, Lun Z. Probing the influence of different oxygenated groups on graphene oxide’s catalytic performance[J]. Journal of Materials Chemistry A, 2014, 2(3): 610-613.
  • Hu L, Zhang R, Chen Q. Synthesis and assembly of nanomaterials under magnetic fields[J]. Nanoscale, 2014, 6(23): 14064-14105.
  • Yan N, Zhao Z, Li Y, et al. Synthesis of novel two-phase Co@ SiO2 nanorattles with high catalytic activity[J]. Inorganic Chemistry, 2014, 53(17): 9073-9079.
  • Zheng F C, Chen Q W, Hu L, et al. Synthesis of sulfonic acid-functionalized Fe 3 O 4@ C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction[J]. Dalton Transactions, 2014, 43(3): 1220-1227.
  • Kong X K, Chen Q W, Lun Z Y. The influence of N‐doped carbon materials on supported Pd: enhanced hydrogen storage and oxygen reduction performance[J]. ChemPhysChem, 2014, 15(2): 344-350.