陈乾旺 教授 博士生导师
电子邮件:cqw@ustc.edu.cn
论文列表:Qianwang Chen F-6785-2010
通信地址:安徽省合肥市包河区金寨路96号中国科大东区 微尺度物质科学国家研究中心 230026
研究兴趣:纳米材料的合成和应用(催化、储能和药物载体等)研究。
陈乾旺教授,1995年获中国科学技术大学理学博士学位,同年留校工作,1996年破格晋升为中国科学技术大学中国科学院结构分析开放研究实验室副研究员;后在日本、德国(洪堡学者)和香港理工大学从事博士后和访问研究;2000年入选中国科学院“百人计划”,被聘为中国科学技术大学教授,博士生导师;2001年获国家杰出青年科学基金;2002年入选教育部“长江学者奖励计划”特聘教授;2004年入选国家人事部等七部委首批“新世纪百千万人才工程”国家级人选,2022年被聘为中国科学技术大学讲席教授,享受国务院政府特殊津贴。任Nature出版集团Scientific Reports, Magnetochemistry等期刊编委,中国科学院强磁场中心双聘研究员。
曾承担国家自然科学基金委纳米重大研究计划重点课题、国家自然科学基金委与中国科学院大科学工程联合基金重点课题、国家高技术研究发展计划(863计划)和国家重点研发计划课题等。长期从事纳米材料的合成和应用(催化、能源转换与储能和纳米生物材料等)研究,以第一作者和通讯作者在Nature Communications等Sci检索刊物发表学术论文400余篇;受邀在Chem. Soc. Rev.等期刊撰写多篇综述论文。根据催化的d-轨道中心理论,化学反应中间体在主族s区金属上的吸附过强或过弱,因而其不是好的催化剂,本组提出了通过电子结构调控来发展主族s区金属单原子催化剂,在石墨烯基底上通过N/O配位Li、Mg或Ca原子,实现了基于主族s区金属单原子的高效电催化氧还原;提出将石墨烯中碳原子发展成高活性电催化活性位点的新思路,并建立了相关方法;发展了磁场下液相体系纳米材料制备与组装方法;在中科院强磁场中心20T稳态强磁体上研发了材料制备和能量色散 X-射线衍射表征装置。
迄今,所发表的论文被国际期刊和专著引用和评价21280余次(含自引),自2016年连续入选爱思唯尔发布的中国高被引学者(Most Cited Chinese Researchers)榜单;自2019年连续入选科睿唯安 “全球高被引学者”榜单,多年入选斯坦福大学全球前2%学者榜单。获美国发明专利1项, 国家发明专利24项。在高等教育出版社出版研究生教材《纳米科技基础》和专著《磁化学与材料合成》各1部。已培养博士后12名,博士49名,硕士44名。获中国分析测试协会一等奖一项 (排名1); 安徽省自然科学一等奖一项(排名1),安徽省自然科学二等奖一项(排名1),获2014中国科学技术大学优秀研究生导师奖,中国科学院优秀研究生导师奖,2016年度“杨亚基金-教育奖”。
曾任第九届、十届、十一届九三学社安徽省委副主委,九三学社第十四届中央委员,第九届政协安徽省委员会委员,第十、十一届政协安徽省委员会常委,第十三届安徽省人大常委会委员;任安徽省欧美同学会第一届理事会理事、安徽海外联谊会五届理事会常务理事。
代表性论文:
1. Ferroelectric properties of porous silicon. Advanced Materials 14 (2002)134.
2. Reduction of carbon dioxide by magnetite: Implications for the primordial synthesis of organic molecules, J. Am. Chem. Soc. 122 (2000) 970.
3. Nondegrading photoluminescence in porous silicon, Physical Review Letters 81 (1998)1710.
4. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires, Advanced Materials 16(2004)137.
5.Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene,Energy Environ. Sci. 6(2013)3260.
6. Doped graphene for metal-free catalysis, Chem. Soc. Rev. 43(2014)2841-2857.
7. High lithium anodic performance of super-high nitrogen-doped porous carbon prepared from a metal-organic framework, Nature Communications 5(2014)5261.
8. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst,Energy Environ. Sci.8(2015)3563-3571.
9.Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media, Nature Communications 8(2017) 14969.
10.Elemental two-dimensional nanosheets beyond graphene, Chem. Soc. Rev.46(2017)2127-2157.
11.Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridium-Cobalt Alloy Core Encapsulated in Nitrogen-Doped Carbon Cages, Advanced Materials 2018, 1705324
12.O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts, Advanced Materials 2018, 1801732.
13. Dual Graphitic-N Doping in One Six-member C-ring of Graphene Analogous Particles Enabled an Efficient Electrocatalyst toward Hydrogen Evolution Reaction,Angew. Chem. Int. Ed. 58(2019)2-10.
14.Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction,Nature Communications 11(2020)938.
15. Constructing Graphitic-Nitrogen-Bonded Pentagons in Interlayer-Expanded Graphene Matrix toward Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction, Advanced Materials 2021, 2103133 (1-11).
16. Tuning the p-Orbital Electron Structure of s-Block Metal Ca Enables a High-Performance Electrocatalyst for Oxygen Reduction, Advanced Materials 2021, 2107103.
17. Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO2 Reduction to CH4, Angew. Chem. Int. Ed. 60(2021)23002-23009.
18.Modification of Porous N-Doped Carbon with Sulfonic Acid toward High-ICE/Capacity Anode Material for Potassium-Ion Batteries, Adv. Funct. Mater. 2022, 2204991.
最近更新:2023年10月